On fractional p-Laplacian problems with local conditions

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Critical fractional p-Laplacian problems with possibly vanishing potentials

Article history: Received 8 April 2015 Available online 12 August 2015 Submitted by R.G. Durán

متن کامل

Local analytic solutions to some nonhomogeneous problems with p-Laplacian

Applying the Briot-Bouquet theorem we show that there exists an unique analytic solution to the equation ( tΦp (y ′) ) ′ +(−1)tΦq(y) = 0, on (0, a), where Φr(y) := |y| r−1 y, 0 < r, p, q ∈ R, i = 0, 1, 1 ≤ n ∈ N, a is a small positive real number. The initial conditions to be added to the equation are y(0) = A 6= 0, y′(0) = 0, for any real number A. We present a method how the solution can be e...

متن کامل

Two generalized Lyapunov-type inequalities for a fractional p-Laplacian equation with fractional boundary conditions

In this paper, we investigate the existence of positive solutions for the boundary value problem of nonlinear fractional differential equation with mixed fractional derivatives and p-Laplacian operator. Then we establish two smart generalizations of Lyapunov-type inequalities. Some applications are given to demonstrate the effectiveness of the new results.

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

EIGENVALUE PROBLEMS WITH p-LAPLACIAN OPERATORS

In this article, we study eigenvalue problems with the p-Laplacian operator: −(|y′|p−2y′)′ = (p− 1)(λρ(x)− q(x))|y|p−2y on (0, πp), where p > 1 and πp ≡ 2π/(p sin(π/p)). We show that if ρ ≡ 1 and q is singlewell with transition point a = πp/2, then the second Neumann eigenvalue is greater than or equal to the first Dirichlet eigenvalue; the equality holds if and only if q is constant. The same ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2018

ISSN: 2191-9496,2191-950X

DOI: 10.1515/anona-2016-0105